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ABSTRACT

Axisymmetric responses of longitudinally excited ring stiffened cylinders
are studied experimentally in the laboratory, and are compared with the
predictions of the Bleich theory for the case of tanks havinhg rigid flat
bottoms; tanks with flexible bottoms of both flat and elliptical geometry are
also studied experimentally. Further, the effects of supporting the entire
system on a flexible spring mount are investigated. It is found for such
cases that the natural modes become infinite in number, and the lowest
mode can be considerably different from that obtained when the liquid is
considered to be a rigid mass. In general, it is found that the predictions
of the Bleich theory compare well with the experiments, for those cases
where it is applicable.
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INTRODUCTION

The response of thin cylindrical shells to longitudinal vibration is
a very important aspect of the dynamics of large, liquid fueled space vehicle
boosters. It is recognized that these responses can be very complicated,
depending on the type of loading that is applied to the container. For space
vehicle applications, the cylindrical shell walls of the tank can be subjected
to both longitudinal and radial loads; however, for this study, we will consider
only radial loading on the tank walls, such as that which results from the
radial pressure loading of the liquid column in a longitudinally excited tank.
Under these conditions, the shell can respond in both axisymmetric and
nonaxisymmetric modes, depending on the input parameters as well as
on the amount of ring stiffening used on the thin walled tank.

Axisymmetric responses of longitudinally vibrated cylinders have
been studied analytically by Bleich [1]* and Reissner [2], employing a
circumferential membrane theory approximation to determine the elastic
tank effects on pressure waves in the liquid. Approximate provisions for
elastic bottoms were included, but liquid free surface effects were neglected
in these studies. Later, Shmakov [3] analyzed free axisymmetric vibra-
tions of a partially liquid filled cylinder having a flat membrane bottom;

Vlasov shell theory was used, and free surface effects were included. At

¥Numbers in [ | refer to List of References.




about the same time, Kana and Dodge [4] studied axisymmetric pressure
waves in liquids contained in elastic cylinders as part of an investigation
of the behavior of small bubbles in longitudinally excited elastic tanks.

Recently, several investigators [5, 6, 7] have studied several aspects
of the axisymmetric modes of a partially liquid filled shell with various
elastic and rigid bottoms, using numerical techniques to solve the coupled
liquid-shell equations. In general, it was found that, in the ranges of practical
parameters for current vehicle systems, axial bending effects in the shell
walls of tanks vibrating in axisymmetric modes, as well as liquid surface
and liguid compressibility effects, should be negligible. Further, Palmer
and Asher [7] found experimentally that the axisymmetric modes were very
difficult to determine in a representative tank system as they were largely
obscured by the strong presence of nonaxisymmetric responses. Thus,
circumferential bending effects can be very important in an unstiffened tank.,
Finally, the effects of ellipsoidal elastic bottoms on the equivalent longi-
tudinal spring constants of a propellant tank have been approximated by
Pinson [8]; however, this study was related to longitudinal forces within
the tank wall, and considered the entire liquid mass to be a lumped frozen
solid. It will be shown in the present study that such approximations can be
in considerable error, within certain ranges of parameters.

In view of the above mentioned findings, it would appear that for a

representative model space vehicle tank, the circumferential membrane




theory of Bleich [1] should give a good approximation to the symmetric
modes in the partially filled, longitudinally vibrated tank having a rigid
flat bottom, provided that ring stiffeners are ‘employed to minimize
circumferential bending effects., Thus, the basic purpose of this laboratory
investigation has been to obtain experimental frequency data from a repre-
sentative cylindrical shell containing liquid in order to correlate with
predictions of the Bleich theory. The effects of ring stiffeners are included
in the investigation, their presence being accounted for by means of an
approximate overall correction factor applied to the tank wall elastic
modulus. Further, liquid compressibility effects are determined by
comparing theory and experiment in several small elastic tanks, covering
a range of stiffnesses. Finally, the effects of supporting the liquid-tank
system on a spring of finite stiffnesswere also studied as such information
should be useful for spring-mass synthesis of actual space vehicle systems.
An analytical expression for predicting the coupled modes of the liquid-
elastic tank system on a support spring was derived from the Bleich theory,
and the results are compared with those obtained from a more exact analysis
by Eulitz and Glaser [9], as well as with experimental results.

Direct correlation of laboratory experimental data with the Bleich
theory is given for the case of a tank having a rigid flat bottom. Although
a study of this configuration might at first appear somewhat academic, it
does serve as a valuable check on the basic formulation of the problem.

Experiments were then conducted using tanks having elastic bottoms of

other and more practical geometries, and the results compared to the above

limiting case.



MODIFICATION OF BLEICH THEORY

Results from Bleich Theory

Bleich's analysis [1] of a longitudinally excited circular cylindrical
elastic membrane shell having a rigid flat bottom, and containing an inviscid
compressible liquid of depth H, leads to several expressions relating the
significant parameters in the system.

It is readily shown that, for the case where the coordinate system
is chosen as shown in Figure 1, the analysis results in a velocity potential

of the form

¢ = [AO sin(ﬁo E)j‘) Iy (}lo %) + i A, sinh (Hn ;E) Jo (Hn -g-):l sin wt
' n=1
(1)

where

-2 _ 2 .wzaz -2 _ 2 wla?
"J‘O_f"‘o+ » p'n_l‘l‘n—
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G

and Iy and Jj5 are, respectively, the modified and unmodified Bessel functions
of the first kind, a is the tank radius, and <o is the sonic velocity in the
fluid. Further, Ko is the single real root (when it exists), and b, are the

imaginary roots of the frequency equation

Io(n)  hpy (wf;, ) 1)

= = 2
rL (p) app \ 2 (2)

Here, h is shell thickness, Py is tank density, pL is liquid density, w is the

excitation frequency, and w, is the membrane shell frequency, given by:
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where E,C is the tank modulus of elasticity. Bleich, and others, pointed out
that a good approximation for the velocity potential can often be obtained by
using only the first term in Eq. (1). Thus, by equating tank velocity and
liquid velocity at the bottom of a tank harmonically excited with an amplitude

.r - o~ .y - P - P _ - S . e S Sy Y e -
y = x5 cos wt, one can evaluate the constant AO and obtain an approximate

expression for the pressure in the tank as

paxg’l(ky) I, (“o é) sin (ﬁo )

Hotol 15(g) = T2(u)] cos (5, 3

q =2 cos wt (4)
The details of the derivation of the above expressions may be obtained from
Bleich's paper [1].

For an incompressible fluid, so that Cy—>= 00, we have EO = B

M = M, andthe approximate pressure given by Eq. (4) can therefore be

written as

. (3) 211 (1) (g 5) sin (o %) (4a)
e et

If, in addition, the tank inertia is small, i.e., Py ~ 0, then Eq. (2) can

be written as

w2a2 _ yh Folilkg)

= — 2
EJp, 2 Igleg) (22)




where ¥ is a stiffness factor to be derived later. Thus, for an incompressible
fluid in a thin tank, the pressure response q at any input frequency w can

be calculated from Eqgs. (2a) and (4a). Unfortunately, the factor Hg cannot
readily be eliminated from these equations.

Approximate Ring Stiffener Factor

The results from Bleich's theory given in the preceding paragraphs
are valid only for a shell of uniform wall thickness. Therefore, to apply
the theory to a ring stiffened shell (Fig. 2), a correction factor will be
derived for the tank modulus, so that the ring stiffened tank is approximated
by a tank of uniform wall thickness having a slightly greater elastic modulus.
This approximation can be derived by assuming that the effect of the stiffener
rings on the tank is the same as that of a line load, P pounds per unit
circumference. According to Timoshenko [10], the deflection due to the

line load P in an unpressurized tank, if L is very large,* is

Pe ~Px
wy = -8—3— (sin Bx + cos PBx)
83 D
where
3
B [1(1_-_1":1]”4
12(1 - v3) alh?

The tank wall deflection in an unstiffened tank due to an internal pressureqis

*L is '"'very large' if e’BL < 0.01.



The total deflection is w = Wi - W, s0 that substituting in the expressions

for Wi, W, D, and B we have

2 2 -Bx
_a a“PPe .
W = q 2E b (sin fx + cos Px) (5)

The radial deflection of the stiffener rings due to a pressure —{i is

This must equal w at x = 0; thus, using Eqs. (5) and (6)

a
E

2 P a2 a’
bt End zER PP

T

and solving for P we obtain

1
P = —_— 7
q Eh g (7)
Erbt+E

We now consider the change in volume of the section of the tank between

x=0andx=%. Thus

2ma wdx = 27a

h

(@]
oo
(o]}
o

2
_a__ dx - 2ma f (sin Bx + cos Px) dx
0

L

2-Tl'a.3q 2 Pe BX

= Eth - 2Tma f (sm Bx + cos PBx)dx
0
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In the second integral, it can be assumed that 5 >~ with the same accuracy

as the previous assumption that L is ''very large.' Therefore,

Tra3qL raP _na3qL madP
Eth  4p%p Eth E:h

(8)

Avolume =

Without stiffener rings, but with a suitable Eeff’ the change in volume of a

pressurized tank is

3
Avolume = -TE—Q-E (9)

effh

The two changes in volume must be equal; hence, using Egs. (8) and (9), we

obtain

1q _ g P
Ferf Fy Et

from which, using Eq. (7), we obtain

EdL gL
E bt 2
= Et

E_bt 2

Eetf = E¢y

r

where v is the ring stiffener correction factor.

Resonant Frequencies

Liquid in Elastic Tank. It is recognized that the coupled natural

frequencies of the axisymmetric oscillations in the present system
can be derived by reverting to the wave equation and assuming solutions

in the form of normal modes of the system compatible with boundary
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conditions for free oscillations. However, the Bleich theory in its given
form may also be readily used for this purpose, and, in particular, it can
more readily be adapted to the problem of vibration of the tank on an elastic
spring support, as will be shown in the next section.

Thus, in order to determine the resonant frequencies using the
formulation just given, we note in Eq. (4) those values of TLO for which the

pressure q becomes large, i.e.,

— Ta
=(2n - 1)< n=1,2,... (10)
Hon (2n )ZH

The resonant frequencies for the longitudinally excited ring stiffened shell

containing liquid can then be obtained from Eq. (2), rewritten as

'YEt/Pt ‘ Pra IO(p'On) (1)
—_ -1+ — -
wrzla.z pth MOnII("LOn)

where v is the ring correction factor derived previously, and

2.2
wr.a
2 _<=2 __n
Mon = Hon o2 (12)
0

Equations (11) and (12) form a highly transcendental frequency
equation which can be solved either graphically or by some computer
iteration technique. It can readily be shown that the mode shapes of the
pressure wave assume the form of the normal modes of the system (i.e.,
those that result from a separation of variables in the wave equation) for
the values of iIOn given in Eq. (10). Substituting these values of '_'-LOn into

Eq. (4), we obtain:
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27,
- 2py axgw-I (e, ) . (p -ll)sin(II f)cos o
n- wo T [IZ'( )-IZ( )] cos (& H O0\M0On a On g
onton' 0'Mon’ ~ 100 Hona

(13)
which, of course, represents a standing wave of infinite amplitude and
has an odd number of quarter sine waves extending from the liquid surface
to the tank bottom.
We now consider several simplifications of the frequency expressions,
Eqgs. (11) and (12), which will be appropriate for space vehicle applications.

If the tank wall inertia is small, Py ~ 0,and Eq. (11) can be written as

2.2
Wpa ~ _‘l/_l} “OnII(HOn) (14)
Et/pL a IO(P'On)

and if the liquid is further considered incompressible, then Bon = Hop?
and Eqs. (10)and (14) can readily be used to calculate the frequencies w,
directly.

One further limiting case will be considered, in order to determine
the range of tank stiffnesses for which liquid compressibility becomes
important. It is convenient to do this in a tank having a larger value of

g so that we will have ﬁOn <<'1, Then we can write

Il(”On) Hon

Io(uon) 2

and Eq. (14) becomes
o2a?

2
vh MOn
E/py, 2

a
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Using Eqgs. (10) and (12), this can be written as

2_2 -1 2
@nd  vh(2n - 1)2172 [1 . YEth] (a)

= -— 15
Et/pL 8a 2ak H (15)

where the liquid compressibility is

System with Elastic Support. We now consider the partially liguid

filled tank having a flat rigid bottom of mass MO’ and supported elastically,
as shown in Figure 3. This is intended to simulate, for example, the
interstage structure of a space vehicle. The coupled natural frequencies

for such a system are given by

k
2 = > (16)
MO + 1a my,

where my is the apparent mass of the liquid (per unit area of the tank
bottom) and is determined by the liquid pressure at that point. Here, we
consider the apparent mass corresponding to oscillatory motion.

We assume the liquid to be incompressible, and the tank wall inertia
is neglected so that Eqgs. (2a) and (4a) will be utilized to determine the

mass loading. Corresponding to the assumptions of Bleich, we can write

0
e n (%) &6 L

since, from the linearized Bernoulli equation

- ¢
q-= pL‘—a—t-
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Substituting Eq. (4a) into the above expression, we obtain (at x = H)

Ovy 92 2y g’y (ko) Ig (Po é)
W = -a—zz = - > > cos wt
t -
“0[10(“0) Il(uo)]
or
2
) 1 Mo
Bre 2 (),
at PL <
Thus,
9%y
Q= -pp g tan (“0 E) ")
and
Pra
_ "L H
mL—TO—tan(poz) (17)

Substituting this expression into Eq. (16) and rearranging, we obtain

wfnaz w%az pL-n'a3 H -1 .
7 :E/ 1+ - tan(po —) (18)
t/Py, Tt/Py, HomMo moa
k
where w% = —0 This equation must be solved in conjunction with Eq. (14),
written as
2,2
“ma” Yh FomlI1(Fom) (19)
Efer 2 Tolkgy)
where w,,, m =1, 2, 3,... are the coupled natural modes of the combined

system. These equations are again highly transcendental and must be solved

either graphically or numerically on a computer.
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COMPARISONS WITH EXPERIMENTAL DATA

Description of Experimental Apparatus

The experiments were performed by longitudinally exciting thin
wall, ring stiffened cylindrical elastic tanks, containing water at various
depths. The excitation was provided by an electrodynamic shaker, and the
coupled symmetric modes of the system were deiermined by ocbserving the
pressure at various points in the liquid, rather than by monitoring the tank
wall motion. This procedure was necessary since it was found that, for
the coupled symmetric modes, pressures became large while, simultaneously,
the symmetric wall motion was too small to measure relative to nonsymmetric
wall motions that would also occur.

All of the test tanks employed in these experiments were 28.45 cm
long and 22. 9 cm in diameter, with a wall thickness of 0. 127 mm. Both
Mylar (E = 7.8 X 10° psi) and brass (E = 16 X 100 psi) were used for the
model tank materials while Lucite plastic (E = 8 X 10° psi) was used for the
various patterns of ring stiffeners. The ring stiffeners were 1.59 mm thick
by 4. 77 mm wide and were spaced uniformly along the tank length. The
main purpose in using Mylar as the model tank material was so that
relatively flexible springs could then be used for testing the tanks in the
elastic support condition. Even an approximate modeling of the stiffness
factors corresponding to the interconnecting section of an actual vehicle

would require the model springs to be quite stiff, and, of course, the stiffness
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factor of such model springs would be greatly influenced by the material of
the model tank. Therefore, in order to work at relatively low frequencies,
which would avoid resonances of the shaker and its support system, Mylar
proved to be a suitable model material and was used for most of the tests.
A photograph of the overall experimental setup is shown in Figure 4, in
which a model Mylar tank is depicted mounted on one of the support springs.

Flat Rigid Bottom: Rigid Support

Experimental data for these conditions are shown in Figures 5
through 9, and are compared with calculated results from Bleich's theory.
It should be pointed out that by ''rigid support'' we simply mean one in which
no spring is used — the condition to which the original Bleich theory is
directly applicable.

Pressure Response to Forced Excitation. Figure 5 shows a comparison

of experimental data with theoretical calculations for the pressure response
to forced vibrations at the center of the tank bottom, for three different
liquid Ievels in a Mylar tank having eleven stiffener rings. The theoretical
curves were obtained from a simultaneous solution of Eqs. (2a) and (4a).

It can be seen that the results compare very well, up through the first two
modes, for the two largest liquid depths. At the lowest liquid depth,
approxir‘nately one-half of a tank radius, the comparison is not quite so good,
part{cularly in the vic¢inity of the natural mode; this is not surprising, since
Egs. (2a) and (4a) represent only an approximation to the pressure because

only the first term of the series Eq. (1) was retained. Furthermore, liquid
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surface response is neglected in Bleich's theory, but it is anticipated that
such effects would become important at shallow depths.

Natural Frequency Variation with Depth. Figure 6a shows experi-

mental data compared with the Bleich theory [Eqs. (10) and (14) with
HOn = "LOn]’ interms of the variation of the first mode frequency with liquid
depth. As indicated, several uniformly spaced ring stiffener patterns were
used on the Mylar tanks, and one pattern on the brass tank. A similar
comparison for the second mode is shown in Figure 6b. It can be seen
from these two figures that good agreement between the theory and experi-
ments exist for either the eleven-ring Mylar or brass tank configurations,
particularly at the greater liquid depths. It should be noted, however, that
the data for the brass tank appear to correlate with the v = 1. 0 (no stiffener
rings) curve, rather than the v =1. 08 (eleven Lucite rings) curve. In effect,
this indicates that the rings had essentially no stiffening effect at all on the
brass tank. This result is expected since the tank material is much stiffer
than that of the rings, and only minute displacements are experienced; in
such a case, the rings cannot readily be bonded well enough to exert uniform
pressure, especially for such small displacements.

The comparison for seven rings on the Mylar tanks is fair, while
that for three rings is poor. In fact, it can be seen from Figure 6a that
the experimental frequencies are slightly lower than those predicted for a
tank having no stiffeners at all. The immediate and definite conclusion

from the trends observedinthese data is that the unstiffened, or even slightly
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stiffened, tank simply does not respond predominantly in axisymmetric
modes; instead, it was found that such tanks more readily respond in non-
axisymmetric wall modes. * Distortions in pressure resulting from the
presence of these modes were also readily observed. Therefore, the

presence of the nonaxisymmetric wall motions altered the internal pressure

so that the experimental data do not agree with the completely axisymmetric

behavior assumed in the theory. It appears that, for the model tanks
employed in this program, the eleven-ring configuration is necessary in
order that the Bleich theory yield a satisfactory prediction of frequencies.

The reciprocal of the frequency parameter for the first mode only
in the brass and Mylar tanks is plotted against liquid depth and compared
with experimental results in Figure 7. Theoretical curves are given for
an incompressible fluid, Eqs. (10) and (14), as well as for a compressible
fluid in a long tank, Eq. (15). It can be seen that the results corresponding
to the parameters of the present tank configurations only begin to approach
the long tank conditions when the tank is nearly full. Therefore, it appears
that the incompressible fluid, short tank theory is the more adequate.

Pressure Distributions. Axial pressure distributions for the first

and second axisymmetric modes, in the eleven-ring Mylar tank, are shown
in Figure 8. Data were obtained for several liquid depths and are given

in normalized form, appearing to be essentially sinusoidal. No appreciable

*This could be observed quite readily by means of a wall displacement
transducer, and has been previously noted and reported.[11].
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radial variaticn of the pressure at a given axial position was present for
this tank; however, such a variation in pressure did occur for the tanks
with fewer rings, particularly near the walls. This again demonstrates
the influence of nonaxisymmetric motions on pressures. Of course, it

would be anticipated that more significant radial variations in pressure

would be encountered for higher modes.

Flat Rigid Bottom: Elastic Support

The same Mylar tank (having a flat rigid bottom) employed in the
experiments described above, for the eleven-ring configuration only, was
modified so that it could be supported on a rather stiff spring mount, as
shown in Figures 3 and 4. The mass M represents that of the rigid bottom,
spring, and shaker armature, in combination.

Experimental data for the coupled frequencies corresponding to the
first two modes of the tank on two different springs, along with those given
earlier for a rigid mount (k = o), are shown plotted against liquid depth
in Figure 9. Theoretical results are given for the one-term Bleich analysis,
Eqgs. (10) and (14), and the modified one-term analysis, Eqs. (18) and (19),
for the two different spring mounts. Also, for the two spring mounted
conditions, theoretical results are also given from a more exact analysis
of Eulitz and Glaser [9], based on what is essentially a ten-term approxima-
tion for the expansion in Eq. (1).

As might be expected, the coilpled frequencies generally decrease

for decreasing values of spring constant k. It may also be noted that the
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frequencies decrease with liquid depth for the rather large values of k used.
Further, it can be seen that the agreement between theory and experiment

is excellent throughout the depth range for the first mode with each spring,
while some deviation for the second mode may be noted at the shallow depths.
This result appears to reflect the same behavior shown in the pressure

response of Figure 5. Of course, for finite values of w%) = the fre-

E)- ’
quency parameter for all modes would converge to the same finite value
at —= 0; for u(z) infinite, the convergent value is infinity.

Finally, it can be seen that for the range of parameters considered
in this study, the results based on the ten-term approximation [9] are
virtually identical with those of the one-term approximation, except at
lower depths in the second mode (it might be anticipated that the deviation
would be even greater for higher modes). Therefore, the one-term
approximation appears to give at least a good description of the system
behavior in the lowest mode, throughout the depth range.

The above results for the two spring mounted cases are shown
again in Figure 10; however, in this instance, they are compared with the
case in which the liquid is considered to be a frozen mass, so that the wall
elasticity also has no effect in the problem. It can be seen that considerable
error can result in the first mode frequencies, in addition to the absence

of all higher modes. The error appears to be worse for the stiffer of

the two systems, with about a 30% error at full depth, for the cases studied.
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Flastic Bottoms: Rigid and Elastic Supports

The frequencies of the first two symmetric modes of the same
eleven-ring Mylar tank employed previously, but now modified with two
different elastic bottom configurations, were determined experimentally
for the same rigid and elastic support conditions. These results are given
in Figures 11 and 12.

Figure 11 presents data for the tank havinga 0, 127 mm thick, flat
Mylar (elastic) bottom (same material as shell walls). It must be empha-
sized that the ordinate scale in Figure 11 is expanded five times over that
in Figure 9; thus, the frequencies of both modes for this case are very low,
The flat bottom is so flexible, compared to the support springs, that the
frequencies for both modes are essentially the same for all values of the
support spring investigated. Further, it can be noted that for this low
effective bottom stiffness the first mode decreases in frequency only very
slightly with increasing depth, while the second mode increases with depth.

Similar data for a tank having a 0. 127 mm thick elliptical Mylar
bottom are shown in Figure 12. The ellipse had a major to minor axis
ratio of 2.0, It should be noted that the ordinate scale used here is the
same as in Figure 9, so that the frequencies of the corresponding modes
for this bottom are closer to those of the flat rigid bottom than to those of the
flat elastic bottom; the elliptical geometry is clearly quite efficient in

providing effective stiffness, asis well known. Since this stiffness is
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intermediate between the other two, one should expect the data to behave
accordingly. That is, not only are the frequency values intermediate, but
a stronger influence of the support spring is evident, particularly in the
first mode for the elliptical bottom tank. Also, the second mode is almost
independent of depth in this tank, again a result that is consistent with the

intermediate bottom stifiness for this tank. These results, insofar as

[}

general trends are concerned, are of course greatly dependent upon the
relative stiffnesses of the tank elastic bottoms and the elastic spring support;
greatly different values of either might result in completly different trends.
It should be mentioned that various of the higher modes could readily
be observed in both of the elastic bottom tank configurations, particularly
the nonaxisymmetric modes. However, we have shown here only results
for the symmetric modes that could readily be observed; these modes are
most significant as they have an average bottom pressure that is nonzero

and becomes large near resonances.
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CONCLUSIONS

For the ranges of parameters investigated in this program, it appears
that the Bleich analysis incorporating a one-term approximation is adequate
for predicting axisymmetric shell displacement and pressure responses in
a thin, ring stiffened, partially liquid filled, flat bottom cylinder, except
at very low liquid levels. Further, the incorporation of a spring mounted
system into this theory likewise predicts similarly accurate results for the
coupled frequencies of that system. As expected, the inclusion of additional
terms into the expansion of the solution further improves the predictions
for the latter system, especially for higher modes and lower liquid levels
where the one-term approximation is least applicable.

Considerably more work should be done to obtain a reasonably
simple approximation for the effects of bottom geometry and elasticity on
the pressure response in a longitudinally excited tank. Based on the results
of the present experiments, it appears that both wall elasticity and bottom
elasticity have an equally significant effect on the pressure response in
the contained liquid column. Therefore, for ranges of parameters that
are typical of current actual vehicle tanks, both effects must be studied
simultaneously, and the coupling of the support structure must also be
included. Considering the liquid to be represented by an equivalent solid
mass can result in significant error in predicting even the lowest coupled
axisymmetric mode in the elastically supported tank, besides neglecting all

higher modes.
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Another uncertain factor arising from the present work and of
possible importance inthe design or analysis of actual vehicles is the effect
of ring stiffeners in eliminating nonaxisymmetric shell vibrations. While
it appearsthatthe eleven-ring pattern used in the present study was adequate
to eliminate effectively such modes for these model tanks, just how well the
present stiffened tanks modeled the stiffness of an actual vehicle tank is
uncertain. Such determinations should be made on the basis of orthotropic
shell considerations, rather than on the approximate procedures employed

here for convenience and simplicity.
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